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Rigorous lower bounds on the entropy per particle as a function of the fraction 
g of the gauche bonds of a system of semiflexible polymer chains is obtained in 
the thermodynamic limit. Only square and cubic lattices are considered. For the 
case of a single chain having l monomers, the bound is obtained for all 
g < ~ = 2/3. For the case ofp > 1 chains, each having l monomers, where / is a 
multiple of 4, the bound is obtained for all g < ~' = 13/90. In both cases, it is 
shown that the entropy is always nonzero for all 0 < g < gm(1), where gin(l) 
-'- ( l -  2)/1. This contradicts the prediction from the Flory-Huggins approxima- 
tions that the entropy is zero for all g < go, where go is some finite nonzero 
number. It is also pointed out that it is not impossible to pack a lattice with 
"disordered" configurations of rodlike chains with finite entropy, again contra- 
dicting an assertion by Flory that it is impossible to do so. Finally, it is 
concluded that one cannot trust the Flory-Huggins approximations at least at 
low temperatures. The study also casts doubts on the validity of the Gibbs- 
DiMarzio theory of glass transitions in polymeric systems. 

KEY WORDS: Polymer chains; gauche bonds; Flory-Huggins approxima- 
tions; Hamilton walks; glass transition. 

1. I N T R O D U C T I O N  

T h e  quas i l a t t i ce  m o d e l  of  M e y e r ,  (1) F lo ry ,  (2) a n d  H u g g i n s  (3) has  b e e n  a 

s t a n d a r d  a n d  usefu l  m o d e l  in the  u n d e r s t a n d i n g  of  the  s ta t i s t ica l  m e c h a n i -  

cal  p rope r t i e s  of  p o l y m e r  sys tems.  A p o l y m e r  c h a i n  is a s s u m e d  to be  m a d e  

up  of  1 m o n o m e r  uni ts  (a lso ca l l ed  segments ) ,  al l  e q u a l  in size a n d  a lso  

e q u a l  in size to tha t  of  a so lven t  m o l e c u l e .  A si te of  the  la t t i ce  is e i the r  
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occupied by a solvent molecule or by a segment. The segments of a 
polymer chain must occupy a continuous sequence of l occupied sites 
connected by nearest-neighbor bonds. Excluded volume effects are taken 
into account by the requirement that a site can be occupied only once, 
either by a solvent molecule or by a segment. The central problem in the 
study of the statistical mechanics of polymers on a lattice is the calculation 
of the number Wp, t where Wej is the number of ways of putting p polymer 
chains, each having 1 segments on a lattice with n = p �9 l + n o sites, n o being 
the number of solvent molecules. In the absence of an exact method to 
calculate We, t for cases of interest, Flory (2'4'5) introduced an approximation 
to estimate this number. Huggins (3) introduced a refinement of this approx- 
imation that in some cases provides a better estimate of Wp,z. Common 
usage denotes both approximations collectively as Flory-Huggins approxi- 
mations. These (F-H)  approximations have been used extensively in the 
literature for various types of calculations and have been regarded as well 
established in that they provide qualitatively "correct" predictions. 

It has been known for some time that the F - H  approximations are 
inaccurate to varying degrees. (6) However, it has been pointed out only 
recently (7'8) that these approximations could not be trusted without serious 
reservations and could even be misleading in some cases. When the F - H  
approximations are applied (4'7'8) to the Flory Model (4) of semiflexible 
polymer chains, it is found that the model exhibits a first-order phase 
transition (curve fFH, Fig. 1) from a completely ordered state, i.e., a crystal 
phase to a disordered phase at a finite temperature T c. A special case of 
this model was considered in Refs. 7 and 8: a single polymer chain (p = 1) 
in the absence of any solvent molecules (n o = 0) on a square lattice. Since 
there are no solvent molecules, the polymer chain covers all the sites of the 
lattice. This limit of covering a lattice with a polymer chain, i.e., a 

f(T) 

Fig. 1. 
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Schematic representation of fFH(T), f(T), and f(T). The behavior of the actual free 
energy f(T) is different from that of fFH(T)- 
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self-avoiding walk, is known in the literature as the Hamilton walk limit. (9) 
A Hamilton circuit is a closed Hamilton walk. As usual, we relate self- 
avoiding walks on the lattice to possible configurations of the polymer 
chain, using the term trans to refer to two consecutive steps of such a walk 
in the same direction, and gauche to refer to two consecutive steps at right 
angles to each other, recognizing however, that our use of these terms does 
not correspond to their meanings in the actual geometry of a real polymer 
molecule. Since our objective is to test the validity of the F - H  approxima- 
tions, it is sufficient to apply these approximations to a square (or a cubic) 
lattice and compare their predictions with some rigorous results valid for 
this lattice. Let g denote the fraction of the gauche bonds and s(g) [this 
quantity was denoted by SH(g ) in Refs. 7 and 8] the actual entropy per 
segment of the system in the thermodynamic limit. The quantity SFH (g) is 
the F - H  estimate of s(g) and go is some positive nonzero number. It was 
established rigorously by direct analysis in Ref. 7 (for the sake of brevity, 
we will refer hereafter to Refs. 7 and 8 as I and II) that 

0 < g < l ,  s (g)  > 0  (i) (la) 
(ii) s(g) >1 Y(g) -- ( g / 8 ) l n ( 4 / g -  3) (lb) 

where 

g -- 4/(m + 3) (lc) 

Here m is some nonzero positive integer. The above results (la) and (lb) 
are contrary to the prediction from the F - H  approximations that 

SFH ( g ) = 0  for g ~  go (2) 

with the value of go depending on whether one uses the Flory or the 
Huggins approximation. The inequality (1) was demonstrated by explicit 
construction of the number of ways of putting the polymer chain on a 
square or a cubic lattice: the trans conformation was identified with two 
consecutive bonds being collinear and the gauche conformation was identi- 
fied with two consecutive bonds at right angles. It was shown in II that the 
inequality (lb) can be improved, i.e., the lower bound for s(g) can be 
raised to an even higher value [see (4), Section 2]. However, the lower 
bounds for s(g) obtained in I and II were established for only certain 
values of g, given by (lc) for some integer m. 

Our aim in the present paper is threefold. First, we wish to show that 
(lb) is a strict inequality for a// continuous values of g ~< ~ = 2/3:  

s(g)>>Y(g) for g~< ~ - - 2 / 3  ( ld) 

Our second aim is to extend the previous constructions of I and II to the 
case of many chains (p > 1), each l segment long. (In the following, we will 
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call a polymer chain to be of length l for short, even though the chain has 
only l monomers and, therefore, is of length l -  1.) We will again consider 
the case n o = 0. The thermodynamic limit on a square lattice is obtained by 
considering n -- v'2/2, p = v'21, v' an integer and taking v' ~ 00. On a cubic 
lattice, the limit is obtained by considering n -- v'3/3, p = v'3/2, v' an integer 
and taking v ' ~  00. We will establish rigorously that for l = 4q, where q is 
some integer: 

(i) 0 < g <~ gm(l), s/(g) >1 ~t(O) = (1/12)1n2 (3a) 

(ii) Vg < ~', sz(g) >1 ~t(g) = ~(0) + ~(g)  (3b) 

where Y(g) is given in (lb) and 

gin(l) = ( l -  2)1l 
g ' =  13/90 (3C) 

Here gm(l) is the maximum possible value of g that can be obtained as will 
be explained below (see Section 4), and st(g) is the actual entropy per 
segment in the thermodynamic limit for a given value of g. For very small 
values of g so that 3 can be neglected compared with 4/g, (3b) reduces to 
(11) of I which was quoted there without any proof. Our final aim is to 
show that it is possible to pack a lattice with rigid rodlike polymers of finite 
lengths in a disordered manner. This is again in contradiction with the 
claim of Flory (4) that implies that it is impossible to pack a lattice with 
rodlike polymers in disordered configurations. Apart from the important 
consequences of (1) and (3) that have been discussed in detail previous- 
ly, (7'8) such lower bounds on the entropy are of interest in themselves in the 
absence of exact enumeration methods to calculate Hip, t. The analysis again 
starts with the explicit construction and enumeration of a subset of Wpj. 
The construction involves the following four main steps: 

i. The lattice is divided into square cells of size I • l. 
ii. Each cell is covered by loops of some given sizes. The sizes of these 

loops determine the value of g. By a suitable choice of the sizes of these 
loops, one covers a continuous range for g. 

iii. The loops are connected together to generate circuits, each one 
covering l sites of the cell, in such a way that the total number of the 
corners can be counted exactly. 

iv. Each circuit is then broken by deleting a bond without changing the 
number of the corners. The broken circuit is then identified as a possible 
configuration of a single polymer chain with I monomers. 

The construction obviously produces a lower bound for Wp,t(G ), 
where We,I(G ) is the number of ways of putting p chains, each with l 
segments so that the number of the gauche bonds is G. Using these lower 
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bounds, we show that both (3a) and (3b) are satisfied rigorously. The 
validity of (3) for I v ~ 4q will be reported elsewhere because of the complex- 
ity of the construction. 

The layout of the paper is as follows. We revisit the case of a single 
polymer chain in Sections 2 and 3 and show that (la) is valid for all 
continuous values of g. We also show that (ld) is valid for all g ~< ~. In 
contrast, the constructions in I and II showed (la) and (lb) to be valid only 
for certain discrete values of g. We also present in Section 2 a new 
construction for a single chain that is used to prove (ld). This construction 
is valid even when the length of the chain is finite. (In contrast, the 
construction in II is valid in the case when the chain length goes to 
infinity.) This construction will be used later on when we consider the case 
of many chains, each of finite length (Section 4). Before considering the 
case of many chains, we digress for a moment and consider in Section 3 the 
case of a single chain on a cubic lattice, and describe a construction that 
yields extra entropy per segment. The case of many chains is considered in 
Section 4 and contains the proof of (3). We start with a square lattice and 
then extend the result to a cubic lattice. Throughout the paper, we consider 
the case of pure polymer, i.e., we set n o = 0. We briefly discuss the effect of 
solvent molecules on our bounds in the final section. This section also 
summarizes our results. 

2. S INGLE POLYMER C H A I N - - S Q U A R E  LATTICE 

The central idea in the explicit construction of allowed ways of putting 
a polymer chain in I and II is to cover the lattice by identical loops of size 
2 • (m + 3) (Fig. 2) and then to connect the adjacent loops at various 
allowed places. The lower bound obtained in I is given by 

s(g) >1 (g/8)ln(4/g - 3) 

in the thermodynamic limit, while the lower bound in II in the same limit is 
given by 

s(g) >1 ( g / 4 ) [ l n ( 4 / g -  3) - 0.2841 . . .  ] (4) 

[Here we have denoted the quantity sn(g ) of I and II by s(g) by 
suppressing H.] The extra entropy contained in (4) comes from moving the 
top-bottom pairs, to be called T-B in the following, of two adjacent loops 
one on top of another to any of the allowed possible positions once the two 
loops have been connected to their neighboring loops in their respective 
rows (see II for details). However, the calculation of the lower bound (4) 
presented in II is valid only for polymer chains that are infinitely long 
( l ~  o~) since it is based on probability arguments. As we will finally be 
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[a) (b) 
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Fig. 2. (a) Covering the lattice with rectangular loops h's. (b) Constructing a Hamilton 
circuit. (c)-(d) Constructing a Hamilton walk from a Hamilton circuit. 

interested in obtaining a lower bound for the case of polymer chains of 
finite length (l < oo), we will present here a calculation similar in spirit to 
the one given in II  but valid for chains of finite length. 

As usual, we start by covering the square lattice (p • 1,) by rectangular 
loops (denoted by X) of size 2 • (m + 3) as described in I and II  and is 
shown in Fig. 2. We will set n o - -0 ,  so that we are dealing with a pure 
polymer system. Define / =  n = 1,2. Let I(x) denote the largest integer less 
than or equal to x. I t  was assumed in I and I I  that 1, was an integral 
multiple of m + 3. However, in the present work, we wish to consider the 
general case by relaxing this restriction. Let R stand for I(1,/(m + 3)): 

I, = R ( m  + 3) + r ( m )  1) (5a) 

where the remainder r is such that 0 < r < rn + 3. Also, let C = 1(1,/2): 

1, = 2 c  + c ( c  2) (Sb) 

where c is either zero or one. The case of c --- 0 is shown in Fig. 2. We have 
C identical columns of the h loops, and there are (R - 1) X loops of size 
2 • (m + 3) and one X loop of size 2 x (m + r + 3) at the top of the column 
in each column. Because of the particular choice of the height of the top 
loop, each column has R X loops covering 21, sites. For the case c = 1, we 
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have an additional vertical line with v sites along with C columns of the 
loops. This vertical line should be placed, either to the extreme left or to the 
extreme right of the assembly of the ~ loops. The whole lattice is covered by 
these ~ loops and the single vertical line. For c = 0 the vertical line is not 
required. The number of the ~ loops is given by 

n - (r  + c )v  + rc 
L = R C  = 2(m + 3) (5c) 

Our construction implies that there are R rows of the loops. We make sure 
that each row has loops of identical heights, as shown in Fig. 2a. 

Consider a row of the h loops. Each loop can be joined to the 
neighboring ~ loop on the right by using two consecutive sites on vertical 
sides, as shown in Fig. 2b. If one excludes connections that involve the top 
or the bottom sites, then there are m ways (m + r ways) to join a ~ of 
height (m + 3)[height (m + r + 3)] to the neighboring ~, and there are 
C -  1 places to make this connection in each row. This construction 
produces a circuit, to be called A r in the following, in each row. It is 
evident that the number of ways of producing distinct configurations of 
R A,'s is given by 

m ( R - 1 ) ( c - O ( m  + r) C-1 >>. mR(C -l) 

Each A r contributes 

G r - ~ "  8 ( C  - 2) + 12 = 8C - 4 

number of corners: each interior ~ contributes eight corners and the two 
exterior ~'s contribute six eaeh. Thus, the total number of corners is 

a t ~-  R G  r -~- 8 L  - 4 R  

In order to generate Hamilton walks, we must connect various Ar's in 
the following manner: we connect a Ar to the A r just below it at any of the 
C columns (see point A in Fig. 2b), and there are R - 1 pairs of Ar's to be 
connected. Thus, we generate at least 

17V(G) = C(R-OrnR(C-1)  

distinct Hamilton circuits A n (see Fig. 2b). Each time two neighboring ATs 
are joined, we lose four corners. Thus, the total number of corners is 
reduced to 

G -~ G t - 4(R - 1) = 8L - 8R + 4 

and the fraction of corners is given by 

g ( n )  = G'//n = 4 4(r + c  + 2) 4 I r ( c  + 2) ] 
m+-------~- v ( m + 3 )  + -n  l + - - m + 3  
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In order to produce Hamilton walks, we treat the two cases c = 0 and 
c = 1 separately. For c = 0, we delete a vertical bond, for example, the 
second one from the bottom on the right side of each A n (see Fig. 2c). For 
c = 1, we connect each A H with the single vertical line by deleting, for 
example, the bottom vertical bond of A H which is right next to the line (see 
Fig. 2d). In both cases, the value of G remains unaltered. Now, each 
Hamilton walk is identified with a possible configuration of the polymer 
chain with n segments and having the number the gauche bonds given by 
G. If W(G) is the actual number of polymer configurations with a given G, 
then it should be evident that I~(G) obtained above is a strict lower bound 
for it: 

W ( a )  >1 W ( G )  

Let us introduce the following quantities: 

s (g)  = lira _1 In W(g)  

Y(g) = lira 1 In l~ (g )  (6) 

g = lim g(n) 
p - - ) ~  

We find that g is given by (lc) and that s(g) >! g(g), where ~(g) is defined 
in (lb). However, it should be evident from the construction that ( lb) is 
shown to be valid only for certain discrete values of g given by setting 
m = 1,2,3 . . . .  in (lc). We now wish to prove (ld) for all continuous 
values of g < ~. Our construction cannot be used to prove (ld) for g > ~. 
However, this does not mean that it is impossible to show (ld) to be valid 
for all g. We will only prove (1 d) here. 

The procedure to be followed below involves a slight modification of 
the one given above. The new construction is closer in spirit to that given in 
II. However, this construction can be used even when the chains are of 
finite lengths, as will be seen in Section 4. On the other hand, the 
construction used in II is valid only for chains with l---> ~ .  

In order to obtain a value of g between gl = 4 / ( m  + 3) and g2 
= 4 / ( m  + 4), we must cover each column with a mixture of h loops of sizes 
2 • (m + 3) and 2 • (m + 4) in the following manner. Let R '  be the total 
number of the ~ loops in a given column. The value of R'  will be 
determined below and will, in general, be different from R given in 
(5a). Let there be aR'  h loops of the height m + 3,/~R' - 1 h loops of the 
height m + 4, and the top h loop of the height m + r' + 4. Here and in the 
following, t9 = 1 - a. If these loops cover the whole column, we must have 

v = aR' (m + 3) + ( fiR' - 1 ) ( m + 4 ) + ( m + r ' + 4 )  

= R ' ( m +  3+ f l ) +  r' 
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We choose R ' =  I ( p / ( m  + 3 + fl)). Evidently R '  and R are different 
except for a = 1. Moreover, R '  lies between I ( v / ( m  + 3)) and I ( v / ( m  + 
4)). Let us consider two consecutive values of a defined by 

a,R~ = I ( I  < R~) 

ex2R.~ = I -  1 

where I is some integer, and R; -- I ( l , / ( m  + 4 - al)  ) and R~ = I ( v / ( m  + 
! _ _  t / t r 4 -  a2)). It  is easily seen that R 2 -  R 1 or R 2-- R 1 - 1. If R z- -  R;, then 

21a = a 1 - a 2 = 1 / R ; .  For R~ = R ; -  1, Aa = ( R ; -  I ) / R ; ( R [ -  1). In ei- 
ther case, we note that in the thermodynamic limit n -9 oo (i.e., v ~ 00) 

Aa ---> 0 as v ---> cr (7a) 

provided 

v ) m  as u - g i n  (7b) 
m + 3 + f l  

Thus, provided (7b) is satisfied, the variable ~ can be treated as a continu- 
ous variable between zero and one. As will be seen below, this implies that 
by a suitable choice of a, the value of g can take any continuous value 
between gl and g2. 

We arrange the above mixture of the ~ loops on the lattice so that 
there are a R '  rows of ~ loops of the height m + 3, f iR '  - 1 rows of ~ loops 
of the height m + 4, and the top row of ~ loops of the height m + r '  + 4. 
There are C ~ loops in each row. If c = 1, there will also be a vertical line 
of v sites along with these ~ loops, as explained before. Let us introduce 
m' = I ( m / 2 ) :  

m = 2m'  + m",  m" = 0 or 1 

Consider two neighboring loops of the height, for example, m + 3. Instead 
of joining them at m places as before, we join them at only the top m'  + m" 
places (again excluding the top corners) as shown in Fig. 3a. For the 
loops of the height m + 4, we connect them at only the top m'  + 1 + m" 
places. We now note that there are m '  + 1 sites near the bot tom of each )t 
loop that have not been used in obtaining the above Hamil ton walks (see 
Fig. 3a). The next step in the construction is to note that the top -bo t tom 
pair T - B  of any two neighboring loops, one on top of another, can be 
moved together such that the bot tom B of the top loop may occupy any of 
the unused m'  + 1 sites near its bot tom (see Fig. 3b). There are altogether 

( R ' -  1 ) ( C -  1) 

such T - B  pairs to be moved. Each one can be moved in m ' +  1 ways as 
explained above. Thus, the total number  of Hamil ton circuits A n generated 
by the above construction is at least (G is the total number  of corners) 

f i r ' (G)  = [ ( m '  + m")'~R'(m" + 1 + m")~R']C(m ' + 1) ( R ' - ' ) ( c - 0  ~< W ( G )  
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Fig. 3. (a) A rectangular 

~1 m'+ rn" possible 
' J  conneclions T 

T >/-L_ j-q_ 

[o) (b) 

loop X with 2m' + m" + 3 vertical sites. (b) Moving a B - T  pair to 
one of the possible m' + 1 positions. 

Each of these At/ can now be converted into a Hamilton walk in at least 
one way. Thus, there are at least these many Hamilton walks. It is easily 
seen that in the thermodynamic limit, the fraction g of the gauche bonds is 
given by 

4 4 - (8)  
g - m + 3 + B  m + 4 - a  

In the same limit, the lower bound Y'(g) on the entropy s(g) is given by 

Y'(g) = lira 1 In lg"(g) 
v--)~ n 

= 1 [aln(m'  + m") + flln(m' + 1 + m") + ln(m' + 1)] 
2(m + 3 + /3)  

Since m' + m" ) m/2, and m'/> (m - 1)/2, we find that 

1 [ a lnm + flln(m + 2) + ln(m + 1 ) -  21n2] 
~'(g) > 2(m + 3 +/3)  

= 1 [ lnm(m + 1) +/31n(m + 2 / m ) -  21n2]. 
2(m + 3 +/3)  

We will now establish that A = Y'(g) - ~'(g) > 0 for some g < ~. Here, g is 
given by (8) and ~(g) is given in (lb). We find that 

[ m ( m + l )  ] 
1 In + / 3 1 n  m + 2 

> 2(m + 3 +/3)  4(m +/3)  m - 

Consider the function o(/3) within the square brackets. The extremum of 
o(/3) is given by 

m + Bm--1/ ln  m + 2 
m 
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For m ) 1, the extremum value/3m is always negative, and, therefore, does 
not lie within the range of interest, i.e., between zero and one. Moreover, 
o(0) < o(1). Thus, if o(0) I> O, this will imply that A i> O. This, in turn, will 
ensure that g(g) is a strict lower bound for all g < ~, where ~ is to be 
determined below. Now, 

o ( 0 )  �9 m + 1 = m - - -  T -  > 0  

if 

m~3.  

Thus, we establish that ~(g) is a strict lower bound for s(g) for all g < 
where ~ = 2 /3  obtained by setting m = 3 and a = 1 (i.e.,/3 = 0) in (8). It 
should be remarked that (ld) is shown to be valid only if (7b) is obeyed. 
Otherwise, one cannot cover a continuous range for g. 

If, instead of using the above construction to prove (ld) for all 
continuous g < ~ = 2/3,  we connect the two neighboring )~ loops of the 
heights m + 3 (or m + 4) at m (or m + 1) places as was used previously to 
prove (1 b) for g given by (1 c), we find that the lower bound for the entropy 
in the thermodynamic limit is given by 

1 [ a l n m  + fl ln(m + 1)] (9) 
2(m + 3 + /3 )  

and lies below the straight line between k'(gl) and Y(g2). On the other hand, 
g'(g) is a convex function of g and lies above this straight line: 

g(g)>ag(gl)+fig(g2), a ~ 0 o r l  

Thus, the simple construction is not enough to prove that Y(g) is a strict 
lower bound for all g. It is for this reason that the new construction has 
been introduced. However, (9) is enough to show that (la) is valid for all 
continuous values of g between zero and one. 

3. SINGLE POLYMER CHAIN- -S IMPLE CUBIC LATTICE 

Let us now imagine constructing Hamilton walks covering the whole 
simple cubic lattice (v • v x v). As was pointed out in I and II, this is 
readily done if one imagines dividing the cubic lattice into v different layers 
of v x v square lattices. We draw Hamilton circuits on each of the v layers 
as described in the previous section, and join these Hamilton circuits in 
each layer to give Hamilton circuits covering all the sites of the cubic 
lattice. Finally, one deletes any one bond to obtain Hamilton walks. It is 
evident that (la) and (ld) still remain valid for s(g) for the simple cubic 
lattice. However, our attempt in this section is to obtain an even better 
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bound  for s (g )  for the cubic lattice. Let  l = n = p3. The  t he rmodynamic  
limit is obta ined  by  taking p--> Go. We  will assume this limit in the 
following. 

We  divide the cubic lattice into u different vertical square planes 
(u • p). We  now cover  each of the u vertical square lattices by  identical 

ar rangements  of )t loops so that  there are R '  ?~ loops in each co lumn in any  
given square lattice [see the construct ion described after  (6) in Section 2]. 
Here  the value of R '  is given by  I ( p / ( m  + 3 + /~) ) .  Thus,  we have  essen- 
tially u identical replicas of any  vertical plane. Since there are R '  loops in 
each vertical column,  we can divide the cubic lattice into N H = R '  horizon- 
tal layers of rectangular  loops, so that  each layer contains  only one 
rectangular  loop f rom each vertical co lumn (see Fig. 4a). In  each layer 
there are NL = pC loops, where C = I ( p / 2 ) .  There  are a l together  L 
= N H N  L = u R ' C  rectangular  loops covering the cubic lattice. For  the 
moment ,  we assume c in (5b) to be zero. 

E 
(a) (c) 

A 

/ ='---> 
t 

/ / 
t / 

/ 7 / o  . . . .  
/ 

, / / 

r r 

[b) (d) 

Fig. 4. (a) A horizontal layer P of N H X's. (b) Oriented square lattice S' according to the 
Manhattan traffic rule and a possible Hamilton walk on S'. (c) Connecting X's in P according 
to the Hamilton walk in (b). 
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Let us now focus our attention on any one of the N n horizontal layers 
of the loops. We will denote this layer by P. Let us replace each loop by a 
point. This gives us a simple square lattice with N L sites. We wilt denote 
this square lattice by S. We now orient this square lattice S according to 
the Manhattan traffic rules(9'l~ alternate rows and columns of the lattice 
are oriented in opposite directions (see I for detail). The number of 
Hamilton walks on this oriented lattice S' obtained from S has been 
calculated exactly by Kastelyen (9'1~ and is given by 

Wff = (1.338. . . )NL (N L --> oo) 

These walks are oriented walks since the underlying lattice S '  is an oriented 
lattice. Consider one of these oriented Hamilton walks (Fig. 4b). The 
orientation of this walk uniquely determines the way of connecting the N c 
rectangular loops of the above horizontal layer P underlying the oriented 
square lattice S '  (Fig. 4c). The observation to be made at this point is that 
one is not required to orient S according to the Manhattan traffic rule. Any 
Hamilton walk on S describes a unique connection of loops on P and 
yields a Hamilton walk on P. The reason for orienting S into S'  is that Wff 
is known exactly. Since we are interested in obtaining a lower bound for 
entropy, orienting S into S'  will be sufficient for our purpose. The adjacent 
loops on P are connected as described in the previous section. Thus, the 
number of Hamilton circuits thus obtained is given by 

where I~'(G) is given in the previous section [just before (8)]. It should be 
evident that the value of g is still given by (8). Thus, the entropy per 
segment is bounded below by 

Vg < ~, s(g) >1 (g /S ) [ In (4 /g -  3) + ln(1 .338 . . .  )] 

= (g /8 ) [ ln (4 /g -  3) + 0 .2 9 2 . . .  ] (10) 

and yields a better bound than (ld) for the cubic lattice. This completes our 
discussion of a single-chain case. For c = 1, we have an extra line covering 
a vertical plane (p x p) (see Fig. 4d) which can be connected to the 
Hamilton circuits generated above (see Fig. 2d) without changing any of 
the above conclusions. Finally it should be evident that (la) is still valid. 

4. MANY POLYMER C H A I N S - - S Q U A R E  LATTICE 

This is the most important section of the paper and contains the proof 
of (3). The proof again proceeds with explicit construction of some of the 
possible ways of covering the lattice by p polymer chains, each with l 
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monomers or segments. We will treat the special case of pure polymer 
system: n o = 0. Thus, we require a lattice with n = p .  ! sites that will be 
completely covered by these chains. We start with a square lattice of size 

• p, n = t, 2. We will assume in the following that p is a multiple of l: 

p = ~,'l ( l l a )  

This implies that 

p = ~,'21 ( l ib )  

so that the lattice can be covered by the p chains. The thermodynamic limit 
p -~  ~ is obtained by considering a sequence [p] defined by ( l lb)  for 
t , '=  1 , 2 , . . .  and taking the limit 1,'--> ~ .  Thus, not all values of p are 
allowed when we take the thermodynamic limit: only those values of p are 
allowed that are square multiples of l. In what follows, we will always 
assume p to be given by (1 lb). With this remark about the thermodynamic 
limit, we return to the pure polymer system. 

One might be tempted to treat this p > 1 case by breaking Hamilton 
walks covering the whole lattice into p equal pieces, each covering l sites. 
This certainly provides us with configurations ofp  chains. But there are two 
problems with this: 

i. It is easily checked that not all configurations obtained by breaking 
Hamilton walks are distinct. An example of this is shown in Fig. 5 where a 
portion of three Hamilton walks (a), (b), and (c) are shown and all give rise 
to the same configuration (d) of chains. The bonds to be removed are 
shown by broken bonds in (a), (b), and (c). 

ii. When we break a Hamilton walk into pieces, we have to delete 
bonds. Each deleted bond may change the value of G, the total number of 

(a) 

(b) 

: f 
I i 

(c) 

Fig. 5. Breaking three different Hamilton walks (a), (b), and (c) that give the same 
configuration (d). 
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AG=O AG = I AG =2  AG = 2 

(o) (b) (r (d) 

Fig. 6. Possible changes AG. 

gauche bonds by 0, 1, or 2. This is exhibited in Fig. 6, where the middle 
bond has to be deleted. Thus, after the Hamilton walk is broken into p 
equal pieces, the total change AG in G is bounded by 

2 p ~ G > ~ O .  

This implies that the total change in the fraction of gauche bonds is 
bounded by 

2 / l  >1 Ag >1 0 

where we have replaced n i p  by l. Therefore, unless l-~ ~ ,  the process of 
breaking Hamilton walks into p pieces changes the value of g by an amount 
that is finite and must be calculated for each configuration of the chains. 
This is not a trivial problem. 

These two problems together imply that another construction has to be 
developed for the case of finite l. This will be done below. For the case 
l ~ o o ,  we observe from above that A g ~ 0  and therefore the value of g 
does not change in breaking the walks into p pieces. Moreover, one can 
also check that the indistinctness of various configurations in this case is 
also of no physical consequence. This is easily done by comparing the 
number of configurations obtained by breaking the Hamilton walks with 
the number of distinct configurations obtained by dividing the lattice into p 
equal cells, each with I sites, and covering each cell by Hamilton walks. The 
special case of l = p  = ~ was considered in I. 

We now proceed to describe the explicit construction to obtain a lower 
bound on entropy and prove (3) for the general case of p chains of finite 
lengths (l < oo). We first observe that for g = 0, all chains must be straight. 
On a square lattice, they can either lie vertically or horizontally. Let us 
divide the square lattice (v • v) into square cells of size l • l. We will 
denote these cells by the symbol C. (This should not be confused with the 
symbol C introduced in Section 2.) Because of the size of these cells, we can 
put l different chains into each. For g = 0, there are two ways of putting l 
chains in a C cell: either all lie vertically or horizontally. Thus, there are at 
least 

2No = 2"/t 2 = 2 ~'2 
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different ways of putting chains into configuration with g = O. Here N c is 
the number of the C cells: 

N c = n / l  2= t ,'2 (12) 

Let W?,t(0 ) stand for the actual number of ways of putting p chains, 
each l segments long, with g = 0. We must have 

G,,(~ > 

Define 

sl (0) = lim 1 In Wp,(O) 

This is the actual entropy of the system for g = 0, and is bounded from 
below, 

s,(0) > ~,(0) (13) 

where 

~ ( 0 ) =  ~'lim--~ ~ ! I n 2  u C = n  ~ 21n2 (14) 

The bound (13) shows that there is a finite nonzero entropy even in the 
ground state, i.e., g -- 0 of the Flory model. ~4) This is also the lower bound 
on the entropy at T = 0 in the Flory model for chains of finite length (see I 
and below). As l ~  ~ ,  this lower bound sl(0 ) approaches zero. This was the 
case of a single polymer chain that was discussed in detail in I and II. 

The nonzero value of Yt(0) for any finite l has a very important 
consequence. Since the orientations of the chains in various cells are 
completely uncorrelated, the configurations generated above have nonzero 
orientational correlations only between two chains that are closer than or 
equal to l lattice spacing. In other words, the orientation correlations are 
finite ranged for any finite value of l. From this point of view, the above 
configurations of chains are disordered. The nonzero value of ~(0) implies 
that it is possible to fill up the lattice with disordered configurations of 
straight chains, i.e., rodlike polymer molecules with finite nonzero entropy. 
In contrast, Flory (4) has claimed that it is impossible to cover the lattice 
with rodlike molecules in a disordered manner. 

In the following, we will restrict ourselves to the special case of I being 
a multiple of four: 

l = 4 q  (15) 

where q is some integer. We have restricted ourselves to this special case 
because the proof involved in the establishment of the rigorous lower 
bound (3b) for g < ~ is considerably simpler here than for the general 
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Fig. 7. 

(o) 

A 

il 

- : , ~ 2  

(b) (c) 

(a)-(b) Construction for the case 0 < g <<. 4/l. (c) The broken bonds should not be 
deleted. 

values of l. The case of the most general form of l will be the subject matter  
of a future publication. However, it is hoped that the simple case consid- 
ered here will give an idea of how one produces a lower bound on the 
entropy. Moreover, and importantly, it will also show that the configura- 
tions generated here are disordered in the sense described above: the 
orientational correlations are of finite range. We divide each C into l /2  
groups so that there are two loops one on top of another in each group 
(Fig. 7a). There are M = 2qN c such groups. Now choose aM, 0 < a <<. 1, 
such groups. There are 

N , ( M )  = (~M) (16) 

different ways of making such a selection from M groups. We convert each 
of the aM groups into two chains by deleting a bond from each loop (Fig. 
7a), so that each chain contributes four gauche bonds. Evidently, each 
chain has l monomers.  Each group of the remainder tiM,/3 = 1 - c~, groups 
is first joined into a single loop of size 2 x l (Fig. 7b) and then converted 
into two chains of length l by deleting the top and the bot tom horizontal 
bonds. These produce chains that contribute zero gauche bond each. In the 
thermodynamic limit, as ~,'--)oo we find that a becomes a continuous 
variable between zero and one. In the same limit, the fraction of the gauche 
bonds in each configuration is given by 

g = lira (G/n)  -- ( 4 / / ) a  
p'--,oo 

where G is the total number  of the gauche bonds. By varying a, we cover 
the range from zero to 1/q for g. Let us now compute the number  of 
configurations that are generated. The value of g is just the fraction of 
corners in loops of Fig. 7a. From our construction, it must be obvious that 
the corners always appear  in pairs as at A or B in Fig. 7c. When we delete a 
bond from the circuit to obtain a polymer configuration, we must ensure 
that the deleted bond does not change the number  of corners in the circuit. 
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This can be achieved if we make sure that we do not delete any of the three 
bonds shown by broken bonds in Fig. 7c that determine the corners. Let b 
denote the number of corners in the circuit. The maximum number of 
bonds that could not be chosen as the ones to be deleted is (3/2)b.  Thus 
the minimum number of bonds that can be deleted to turn the circuit into a 
polymer is 

N D = l -  3b/2 (17) 

This ensures that the value of g remains unchanged. In the following, we 
will make sure that Nz~ remains positive, nonzero integer. Now, the number 
of bonds that can be deleted to produce polymer configurations containing 
four gauche bonds in each loop in Fig. 7a is l - 6. Thus, we require q/> 2 
(l/> 8) so that this number remains positive. There is, however, only one 
way to turn Fig. 7b into two straight chains. Moreover, in each cell, we can 
put the loops either horizontally or vertically. Thus, the number Wp.t(G) of 
configurations for a given number G of the gauche bonds is bounded by 

Wp,t(G ) >1 2NcN~(M)(I- 6) 2~M 

Let us introduce the following quantity: 

s t ( g ) =  lim l l n W p , ( G )  (18) 
p~ ---)' ~ n 

This is the actual entropy per segment for a given value of g in the 
thermodynamic limit. Using Stirling's approximations in N~(M), we find 
that sl(g) is bounded by 

a l n ( / - 6 ) +  ~ l l n  1 + TB/ln-~ (19) 
�9 , (g)  + 7 

Consider the difference A = st(g) - ~t(g), where Yt(g) is given in (3b). We 
find that 

2lA >/ a l n [ ( / -  6 ) 2 / ( / -  3a) ]  + / ~ l n ( 1 / f l )  

>1 a ln[ ( l -6 )2 / l ]  

If 

( l - 6 ) 2 ~ > l ,  i.e. I>/ 12 

(remember that l is a multiple of 4), then A /> 0. This means that for ! ) 12, 
(3b) is a strict lower bound for 0 < g < 4 / l .  

We will now consider the cases I - - 8  and l = 4 separately. First 
consider l = 8. We break the two loops of Fig. 7a by deleting a bond so that 
each one has three gauche bonds. The loop in Fig. 7b is broken as before. 
The value of g is now given by 3a /8 .  Following above, we find that sl(g ) is 
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now bounded by the same expression as (19) except that I n ( I - 6 )  is 
replaced by In 4 as there are four ways to break a loop in Fig. 7a to yield 
three corners. We find that 

21A/> aln[(n)2/ct(41/3 - 3a) 3/4] + f l ln(1/ f l )  > 0 

for l = 8. Thus, (3b) is still valid for g < 3 / l  = 3/8 .  We now consider l = 4. 
We can delete any of the four bonds in each loop in Fig. 7a to yield two 
gauche bonds each. The loop in Fig. 7b is broken as before. Evidently, 
g < 2 a l l  = ct/2. Proceeding as before, and calculating A, we find that 

2/A >/ aln[(4)2/a(2l  - 3a)  ' /2] + f l l n ( l / f l )  > 0 

for l = 4. Thus, (3b) is valid for g < 2/1 = 1/2. Putting all these results 
together, we conclude that (3b) is a strict inequality for all g < ~' = 13/90 
[see (3c)] for q < 6, i.e., l = 4q < 24. 

As l increases, g decreases and eventually becomes smaller than ~', 
with ~' given in (3c). Thus for q > 6, we must produce configurations with 
more and more gauche bonds in order to cover all values of g < ~'. This is 
what will be done below. We will accomplish this in stages so that we can 
appreciate the pattern common to all these configurations. 

We divide each C into 1/2 groups so that there are two rows of two h 
loops of size 2 • q in each group as shown in Fig. 8a. Again, there are 
M = 2qN c groups. We choose aM out of these M groups and connect them 
(Fig. 8a) to give rise to two separate chains with 12 gauche bonds each. The 
two loops in a given row are connected at q -  3 places to give rise to a 
circuit that can be broken at at least l -  18 places [set b = 12 in (17)] to 
produce a possible configuration of a chain with 12 gauche bonds. There 
are /3M groups that are left and each of these is turned into two loops of 
size 2 • (2q) as shown in Fig. 8b. This configuration is identical with the 
one shown in Fig. 7a. We now turn these loops into two chains with four 
gauche bonds each. As said above, there are l - 6 ways of turning a loop in 
Fig. 8b into a configuration of a chain with four gauche bonds. Thus, we 

Fig. 8. 

(o) (b) 

Construction for the case 4/l < g < 12/L 
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finally find that We,I(G ) is bounded by 

l _ 3) 2~M Wp,,(G) > 2NcN,~(M)( ~ (1 - 18)2~M(l - 6) 2eM 

with G given by 

G = 12c~M + 419M 

The factor of 2 NC is due to the fact that we can choose the h loops to be 
either vertical or horizontal. In the thermodynamic limit, we find that the 
fraction g of the gauche bonds is given by 

g = ! i ra  ( G / n ) =  4(3a + t9) / l  

where a is now a continuous variable between zero and one. We also find 
that the entropy is bounded by 

a l _ 3 ) ( l _ 1 8 ) + f i l n ( l _ 6  ) s,(g) > ~t(O)+ 7 1 n ( ~  

+ ~ / l n  1 + 19 1 a ln-  
Let us calculate A = st(g ) -- ~t(g), where ~(g)  is given in (3b). We find that 

( l /4  - 3)2(l - 18) 2 (l - 6) 2 
21A > ~ln +191n > 0 

a( l / (1  + 2a) - 3) 3 19(l/(3 - 219) - 3) 

if 

and 

l ( I / 4 -  3)2(l - 18)2> m a x a (  1 + 2a 3) 3 

We find from the Appendix that the first condition implies that 

1 (2 -~ )  / ( 1 +  0 3 

where ~ = [(1 + 9/l)] 1/2, and is satisfied for q > 5. The second condition is 
also satisfied for q > 5. Therefore, we conclude that (3b) is a strict lower 
bound for q < I ( 3 / g )  = 20, i.e., l = 4q < 80 for g < ~'. 

We now proceed to describe how to generate configurations that 
produce more and more gauche bonds as l increases. This construction will 
also establish that (3b) is a strict lower bound for all g < ~' no matter how 
large 1 is. 
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Fig. 9. 

< 4 ,  

A part of the cell C covered by vertical rectangles R's of size 4 • q. We have shown 
only two out of four rows of R 's. 

Let us now focus our attention on any one of the square cells C. We 
divide C into l rectangles, each of size 4 x q. We will denote these 
rectangles by the symbol R (this should not be confused with the symbol R 
in Section 2): any given R has four sites along the horizontal direction and 
q sites along the vertical direction. We will call these R ' s  as vertical 
rectangles. There are four rows of these R's,  and there are q R ' s  in each 
row in any given C (see Fig. 9). Choose one of these R's.  The rectangle R 
has 1 sites and can be covered, therefore, by a single chain. This is what we 
intend to do in the following in order to obtain a lower bound ~ (g )  for the 
actual entropy sl(g ) for any g. The idea is again to cover R by rectangular 
loops ~ as usual. Let s -- I ( q / r ) :  

q =  r .  s + t (0<<. t < r) (20) 

We now cover R by two identical vertical arrangements of loops such that 
there are r - 1 loops of size 2 x s and one loop of size 2 X (s + t) in each of 
the two vertical columns. We have shown one such arrangement in Fig. 10a 
where the top loop is of the size 2 X (s + t). Notice that along any given 
row the loops are of equal heights. For r = 1, the construction is identical 
with that of Fig. 8a, and has been considered above. In the following we 
will assume r/> 2. We now connect the two rectangles in the same row at 
any two consecutive points (excluding the two corner points) as usual. 
There are 

(s -- 3) r -  I(S "Jr- t - 3) >/(s - 3) r 

ways of doing that. We have assumed here that s - 3/> 1. This implies that 
q >/4, i.e., l ~> 16. Thus, our construction is valid only when l 1> 16. This 
construction gives r circuits, one in each row in R. Each of the top r -  1 
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~ s+t 

DD 
DD 

R 

(o) Cb) 

Fig. 10. (a) Covering R by rectangular loops ~'s such that there are r - 1 ~'s of size 2 • s and 
one X' of size 2 x (s + t). (b) A possible connection giving a circuit covering R. A bond on the 
outer sides must be deleted to convert this circuit into a polymer chain covering R. 

circuits is now joined with the one just  below it at any of the two columns, 
either the left one or the right one, as shown in Fig. 10b. This yields an 
extra factor  of 2 r -  ]. Thus, we have constructed 

2 r - l ( s  - 3)r--l(s + t -- 3) > 2~--'(S -- 3) ~ (21) 

different circuits covering all the l sites of R. Let G R be the number  of the 
gauche bonds  in any one of these circuits. This is just  the number  of 
corners, i.e., bends in the circuit covering R that is, for example, shown in 
Fig. 10b. It should be evident that  all the above circuits have the same 
number  G R of the gauche bonds.  In  order  to generate a configurat ion that  
can be identified with a configurat ion of a polymer  chain, we must  delete a 
b o n d  f rom each circuit, so that  G R remains unchanged.  There are 2r  X 
loops in Fig. 10a, and  in each of them we can delete any  of the s - 3 bonds  
on the outer side (i.e., the side not  used in the connect ion in Fig. 10b). 
Thus, there are at least 2r(s - 3) ways of deleting a bond  without  changing 
GR. Therefore, the total number  wl(GR) of configurations of a single 
polymer  with the number  of the gauche bonds  G R is evidently bounded  by  

wt(G R ) /> ~t(GR ) = 2~(s - 3) r+l r  (22) 

Let us now compute  G R. We note that the two ~'s at the top in Fig. 
10b contribute ten gauche bonds,  i.e., comers.  The same is true for the two 
X's at the bo t tom in Fig. 10b. The remaining rows contribute eight gauche 
bonds  each. Thus, the value of G R is given: 

G R = 8 ( r -  2) + 2 • 10 = 8r + 4 (23) 

In  order that  two loops can be connected,  we must  have s > 4. This implies 
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that 

Here, ~ and GR 
respectively. 

r < ~ = l /16 (24a) 

Gn < Gn = l / 2  + 4 (24b) 

denote the maximum possible values of r and G n, 

It has been remarked above that we are considering r ) 2. Then, an 
even better bound than (22) can be obtained by following the improvement 
suggested in Section 2. We connect two loops in the same row at only 
"half" of the s -  3 places and then move the top-bottom pairs without 
changing G R. Let us assume 

s = 2 ( u + l ) + v  

where u is some nonzero integer, and v is either zero or one. Then it is 
easily seen that the total number of configurations thus generated for a 
polymer chain in R is given by [compare with (22)] 

#;(GR)=2~u~-'(u+t)(u+v)~-'ru (r~>2) 
The factor (s - 3)r-l(s + t -- 3) in (21) has been replaced by ur- l (u  + t) 
while the remaining (u + v) r-  1 comes from moving the top-bottom pairs in 
adjacent rows. There are at least 2ru different ways of breaking the circuits: 
There are at least u different bonds that can be deleted on the outer side of 
each of the 2r loops. Thus, we finally have 

wl( G R ) ) (2u2)~r (r >/2) (25) 

where GR is given in (23) since the new construction does not alter the 
value of G R. Using the following inequality 

2u = s -  2 -  v t> s -  3 (26) 

we find another bound: 

wl(G R ) ~>[(s - 3)/V~" ]~r  (27) 

Because of the size of R's, we know that there are IN c different R's. 
Let us choose alN c out of IN c R's (0 < a ~< 1) that are turned into polymer 
configurations, as described above, with s = I (q / r ) ,  where r is some given 
value (r/> 2). The remainder of fllN c, fl = 1 - a, of the R's are turned into 
polymer configurations with s' = I ( q / ( r  - 1)). Let u' be given in terms of s' 
by s' = 2(u' + 1) + v', v' = 0 or 1. Then, using (25), we find that the total 
number We.t(G ) of configurations is bounded by 

9 N c [ I N  c ~ r  2 r ~ a t N c r  *2 r" t t f l l N c  
We,,(G)>~.. t.,U~)[(2U)rJ [(2U ) rJ 
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where r' = r - 1. The factor 2 Nc is due to the fact that we can divide each C 
into either vertical rectangles R of size 4 • q, as assumed above, or into 
horizontal rectangles of size q x 4. The value of G is given by 

G = atNc(8r + 4) +/3lNc(Sr '  + 4). 

Using N c given in (12) and taking the thermodynamic limit u ' ~  ~ ,  we find 
that 

g = ] i r n ( G / n ) = ~ ( 8 r + 4 ) + ~ ( S r ' + 4 )  (28) 

The actual entropy st(g ) is bounded by 

a In ~ (2uz)~r + ~ In --(2u'2)~'r' 
>_- + 7 /3 

Let us compute the difference A = sl(g ) - ~(g), where ~t(g) is defined in 
(3b). We find that 

e L I  (2u2) rr , t/2)] [ (2U'2)r'r ' 3)-(,'+1/2) i A >~ - / ln  - - -d---  ( p, - 3)-(r + + f l l n  /3 ( # -  

where we have used the Striling's approximations in N,~(lNc) and where 

1 (29) 
/~ = a ( 1  + 2r)  + 13(1 + 2 / )  

We now establish the conditions under which A/> 0. If A is nonnegative, 
this would imply that ~(g)  is a strict lower bound of st(g). It is evident that 
for A >/0, it is sufficient to have 

(2u2)rr >1. max [ a(  # -- 3) ~+ t/2] (30a) 

and 

Here max~e~(a) 
0 < a < 1, and 
= l/[1 + 2r - 2/3(r - r')] = l/(1 + 2r - 2fl), we conclude that 

max[/3(/~ - 3)/+1/2] =[ /3( /x  - 3)r'+1/2]/~= 1 
/3 

(2u'2)/r ' > max[  t ( / ,  - 3) /+V2 ] (30b) 

means the maximum value of the functions ~ a )  for 
a similar meaning for max/d~(/3). Rewriting /z as /x 

3)r -  1/2 

3)r- 1/2 (30c) 

l 
- ( 2 r -  1 

Thus, (30b) reduces to the condition 

- I (2u'2) r I ( r -  1) >1 (2 r -  1 
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From the Appendix A, we find that 

~ = max [ ~(/ ,  - 3) r+l/2 ] 

_ 2r 21 (2r+3)/(2r-1 +-a-~41)- o,(r) { l[12(2r + o,(r)]+ 1) 

2r+3[ '~ , ( r )  I r+l/2 
< ~ 2(2r + 1) 3 

where 

and 

24(2r + 1) J 1/2 
a , ( r )=  1+ / - ~ - 2 1 )  

3)r+ J2 

~l(r) = 1 + ol(r ) 
Evidently, (30a) will be automatically satisfied if we can satisfy the follow- 
ing inequality 

r+l/2 
2 r + 3 [  l~l(r) 3] (r > 2). (30d) (2u2)r/> ~ 4r + 2 

It is easily seen from (30c) and (30d) that there always exist some number 
/~(r), which is a function of r, such that for all I > /~(r), the inequalities 
(30c) and (30d) are jointly satisfied. Here, /~(r) is some number, not 
necessarily an integer, for which at least one of the two inequalities turns 
into an equality. The function/~(r) is an increasing function of r. We will 
now demonstrate that ~/(g) is a strict lower bound for sl(g ) for all g < ~', 
where ~' is given in (3c), no matter how large l is. It is convenient for this 
purpose to go back to (30a) and (30c). The maximum value of/~ is obtained 
by setting a = 0 in (29). Thus, (30a) is certainly satisfied if 

( )~+~/2 
r / 3 (30e) (2u2) > 2r-  1 

Since u' > u, we note that (30c) is certainly obeyed if 

l ( 1 3) r-l /2 
(2u2) r- 

2 r -  1 
(3Of) 

If (3Of) is obeyed then the inequality 

t 3 (30g) 2u2 > 2 r ~  

is automatically satisfied. Using (3Of) and (30g), we find that (30e) is also 



466 GujraU 

obeyed. Therefore, our aim is to obtain the condition on how large I should 
be as a function of r, so that (30f) is satisfied. Let ~(r) be the solution of 

1 3)r-l/2 
(2U2) r- = ( 2 r / 1  

which is nothing but (30f) as an equality. It is evident that (30f) is always 
obeyed for l >1 Ic(r ). Let us introduce 

T(r) = 4m(2r + 1) (31a) 

where m is some integer, to be determined below, so that l'(r)/> ~(r). If 
~(r) = l'(r)/4, then 

f ( r )  = ~ - 7  ) 2m 

We will see below that r and m are chosen in such a way that r >/ m. This 
means that 

Y(r) < 2m + 1 

Now, zT(r) = I ( Y ( r ) / 2 )  - 1 >/ m - 1 and the largest value of / consistent 
with u = tT(r) is given by 

[m = 8rm + 8r - 4 

If (30f) can be satisfied for the above value of l =fro and u = ~7(r), then it 
will certainly be satisfied for / = l (r)  and u = ~(r)[l  m >/(r)] .  Thus, in order 
to satisfy (30f), we demand that 

r-1 jr- 1/2 
[ 2 ( m - 1 )  2 ] ) [ 4 m ( 1  + 2 - - ~ _ 1 ) + 1  (30h) 

If (30h) is satisfied for some r = Y, then, using (30g) and noting that 
(2r + 1 ) / ( 2 r -  1) is a decreasing function of r, we find that (30h) is 
satisfied for all r )Y ;  note that m is treated as a constant in (30h). 
However, the value of m depends upon the particular choice of r = ~'. For 
the sake of definiteness, we will assume in the following that F = 6. Then, 
the value of m is determined by the following inequality: 

[ 2 ( m - 1 ) 2 1 5 9 (  __]_]__ + 4 8 m  1) 11/2 

and is satisfied for m ) 6. We will choose m = 6 so that we can obtain the 
maximum value for ~', as explained below. 

For m = 6, l'(r) is given by 

l '= 24(2r + 1), r ) 6 (31b) 
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Let us take some l lying between l'(r + 1) and l'(r): 

[(r) <<. l <  T(r + 1) (32) 

We divide q = l /4  into r parts as usual: q = rs + t. The maximum value of 
g is obtained by setting c~ = 0 in (28): 

8r + 4 8r + 4 
g - l > 24(2r + 3) 

where we have used the fact l < ]'(r + 1). We rewrite g as follows: 

g =  1 2 r + 3  

1(1 2 
> 6  2 ~ + 3 )  (r~> ~ = 6 )  

= 1 ( 1 - ~ 5 ) - 9 0 1 3  _ ~ ,  

Thus, we see that as long as r/> ~" = 6, (3b) is valid for all g < ~' = 13/90. 
For r = 6, ]'(r) = 312. It is easily seen that for 2 < r -<< 5, and l satisfying 
(32), the inequalities (30c) and (30d) are simultaneously satisfied. Therefore, 
we finally conclude that for any / ,  (3b) is always satisfied. 

We now wish to show that (3a) is also satisfied for all l = 4q. We first 
notice that the maximum possible value of g is obtained when every chain 
is in a configuration which has l -  2 corners. Two examples of such a 
configuration are shown in Fig. 11. Therefore, the maximum value of g is 
given by 

gm(l) = ( l -  2)/ l .  

As l--+ ~ ,  gm( l )~  1 and was the case considered in I and II. However, for 
any finite 1, gin(l)< 1. For l =  4, i.e., q = 1, gin(4)= 1/2 and can be 
achieved by the construction described above for l = 4 [see the paragraph 

Fig. 1 I. 

l I 
(0) (bl 

Construction for g =gm (l). 
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after (19)]. For any other l, the maximum value ~(l)  of g obtained in the 
constructions described above is always smaller than g,,(l). It is evident 
from above, however, that sl(g ) > ~(0) for 0 < g < g(l).  For l/> 16, we 
find from (24b) that ~,( l )= 1/2 + 4/ l ,  while for l = 12 and 8, we can 
produce ~,(l)= 4/l .  Therefore, in order to cover the range between ~(l) 
and gm(l), we again use the following familiar trick: We use a fraction a of 
the C cells that are covered with configurations that were produced to yield 
g = g(l). The remainder fraction /3 of the C cells are covered with 
configurations shown in Fig. 11. For the later, we cover the C cell by 
rectangles of the size 2 x (2q) or the size ( 2 q ) x  2. In each rectangle, we 
draw either of the two configurations shown in Fig. 11. It is evident that for 
all values of a between zero and one, sl(g ) > ~(0). This proves (3a). 

Our final remark regarding the proof of (3a) and (3b) is that the 
configurations generated here have orientational order that are of finite 
range: Since we can cover each cell by either vertical or horizontal loops (or 
rectangles), there is no orientational order between chains that belong to 
two different cells. From this point of view, the configurations generated 
above are disordered, and, from what has been said above, have nonzero 
entropy associated with these configurations, no matter how small g is. 
Even for g = 0 the configurations have only short-range order as has been 
explained above [see the paragraph after (14)], and have nonzero entropy 
for any finite l. This constitutes a contradiction with the statement of 
Flory (4) that it is impossible to pack a lattice with disordered configurations 
of rodlike molecules (g  = 0 in our terminology). 

The above analysis can easily be extended to the case of a cubic 
lattice. We divide the lattice into layers of square lattices. Since the 
construction described above can be carried out for each square lattice, we 
conclude that (3) must remain valid even on a cubic lattice. (However, 
because l is finite, one cannot follow the construction of Section 3 to get 
extra entropy [see (10)].) We consider a ~ • v X v cubic lattice (n = v 3) 
where v is again an integral multiple of l, i.e., v is given by ( l la) .  Since 
p = n/ l ,  p must be of the form p = v'312. The thermodynamic limit is 
obtained by taking v ' ~  oe. 

5. DISCUSSION AND CONCLUSIONS 

We have extended the analysis of I and II to establish rigorously that 
for the case of a single polymer chain in the absence of solvent molecules, 
( la) and (ld) are valid for all continuous values of g in the proper range. 
We have also considered the case of a single chain on a cubic lattice and 
showed (10) to be valid for all g < ~, where ~ = 2/3.  However, our main 
objective was to consider an assembly of p polymer chains, each with I 
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segments. We have established by explicit construction that (3a) and (3b) 
are rigorously satisfied. The proof was carried out for the case l = 4q, q an 
integer and the thermodynamic limit was obtained by considering p = u'l 
with ~,' an integer and taking the limit u---> oo. The general case l v a 4q is 
much more complicated and will be reported elsewhere. However, the 
simple case (l = 4q) is enough to show that (3a) and (3b) are in contradic- 
tion with (2), the prediction from the F - H  approximations. We have also 
shown that it is not impossible to cover the lattice with disordered configura- 
tions of polymer chains with g = 0, i.e., rodlike molecules. This is also in 
contradiction with the claim of Flory (4) that it is impossible to cover a 
lattice with rodlike molecules in a disordered configuration. The above 
results are also valid on a cubic lattice. 

As has been pointed out in I, the case of nonzero no, i.e., the case when 
there are solvent molecules present can easily be treated by dividing the 
lattice with n + n o sites into two pieces L 1 and L 2 such that LI contains n 
sites and L 2 contains n o sites. We then cover L~ by polymer chains as 
described above. It should be evident that the lower bounds obtained here 
remain valid even for n o v~ 0. The meaning of g is again the same: it is the 
number of the gauche bonds per segment in the thermodynamic limit. 

As was observed in II, our lower bounds are useful only for small 
values of g, especially for g < go [see (2)], for which the F - H  approxima- 
tions SFH(g) must be regarded as identically zero. It was also noted there 
that there is a value ~ of g, such that 

g > go (33) 

and [the lower bound YH(g) in I and II is denoted by Y(g) here] 

Y(g) >1 svH(g ) f o rg  < 
(34) 

Y ( g) < SFH( g ) f o rg  > g 

(see Fig. 6 in II). For the case of many chains, we note that ~ (g)  > Y(g) 
[see (1) and (3)]. Moreover, we find that even in this case there exist two 
numbers go and g such that (2) and (33) are satisfied and that ~ (g)  satisfies 
(34) [replace s by ~(g)]. 

Let us now consider the thermodynamics of the Flory model (n) for 
many chains. According to the model described in Ref. 4, the energy E (g )  
in the configuration with g as the fraction of the gauche bonds is given by 
(we will assume n o = 0) 

E(g)  = E . g . , ,  (35) 

where c > 0: ~ is the energy required to create a gauche bond. Since IYVej(g ) 
is a lower bound on Wpj(g), we find that the partition function Z satisfies 
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the following inequality: 

Z = ~ Wp,,(g)e -~g ' ' / r  (k B = t) 
g 

>~ Z I~p,l( g) e-('g'"/T 
g 

= 2~ (36)  

Let f (T )=  - T l n Z / n  be the actual free energy per particle and f (T )=  
- TlnZ /n  in the thermodynamic limit t,'--)oo. We find from (36) that 

f (T )  <<. f (T) (37) 

At very low temperatures, we expect the sum in Z to be dominated by 
small values of g. Thus, one can use (3b) for ~ (g)  to obtain 

T e-8,/r (38) f ( T )  = - r (O) - Ve 

at very low temperatures. Here we have neglected 3 compared with 4/g in 
(3b). Using (37) and (38), we find that the curve for f ( T )  must lie below the 
curve for f (T) .  Moreover, at T = 0, both curves must meet. We have shown 
this schematically in Fig. 1. The function fFH(T) is the free-energy estimate 
obtained by using WvH(g ) in place of Wp,t(g ) in Z. The actual free energy 
f (T)  has a qualitatively different behavior than that of fFH(T) at low 
temperatures. Thus, the actual free energy f(T) does not produce a first- 
order transition to a completely ordered state as fFH(T) shows at T = T C (see 
I and II for details). Moreover, since f (T)  lies below f(T), it should be 
evident that the actual entropy 

s,(T) = -Of (T) /OT 

per segment must reach a constant value at T = 0 which is bounded by 

st(T= 0) >/~'t(0) = ~ l n 2  > 0 (39) 

Thus, for finite l, the system approaches T = 0 with finite entropy. For 
l---) ~ ,  the case discussed in I and II, we find that ~(0)---)0 and that (39) 
reduces to 

st( T -- O) >1 0 

We had assumed in I and II that the entropy of the system at T = 0 was 
zero (l--) oo). It can be argued that this in fact is the case by considering an 
upper bound of the entropy and noting that this bound vanishes as g---)0. 
For I < oo, (39) shows clearly that there is a finite entropy in the system at 
T = 0 .  
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We finally remark that our conclusion in I and II regarding the 
validity of the Gibbs-DiMarzio explanation of the glass transition remains 
unchanged: It is not obvious that the actual free energy f (T)  has a 
metastable extension like that produced by fFH(T) and shown by the 
broken part of it in Fig. 1, and therefore their explanation of an ideal glass 
transition at a finite temperature To, where the metastable extension of 
fFH(T) has zero entropy, can at best be a conjecture. 
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APPENDIX 

Consider the function 

where ~, a, b, and p are some constants. We wish to find the maximum of 
(~(a) for 0 < a < 1. The condition for the extremum of q~(a) is given by 

x - 3 = e ( x  - ax)x/X ( A 2 )  

where 

x = X/(a + ba) (A3) 

The solution of (A2) so that the corresponding a lies within zero and one is 
given by 

x m -  2ap 1 + 1 + (P ~ ~23, (A4) 

It is easily seen that the above extremum point (A4) is actually a point of 
maximum for if(a). Let a,, denote the point of maximum. Then, 

where 

o=[I + 12ap/(e- 1)2x] '/2 
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